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Effective dynamics in Hamiltonian systems with mixed phase space
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An adequate characterization of the dynamics of Hamiltonian systems at physically relevant scales has been
largely lacking. Here we investigate this fundamental problem and we show that the finite-scale Hamiltonian
dynamics is governed by effective dynamical invariants, which are significantly different from the dynamical
invariants that describe the asymptotic Hamiltonian dynamics. The effective invariants depend both on the
scale of resolution and the region of the phase space under consideration, and they are naturally interpreted
within a framework in which the nonhyperbolic dynamics of the Hamiltonian system is modeled as a chain of
hyperbolic systems.
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I. INTRODUCTION invariants(e.g., effective fractal dimensigpnwhich (i) may
) ) o . be significantly different from the corresponding invariants

~ Acomprehensive understanding of Hamiltonian dynamicssf the asymptotic dynamicsii) depend on the resolution but
is a long-outstanding problem in nonlinear and statistical,g, pe regarded as constants over many decades in a given
physics, which has important applications in various Otherregion of the phase space; afiil) may change drastically
areas of physics. Typical Hamiltonian systems are nonhypekom one region to another of theamedynamically con-
bolic as they exhibit mixed phase space with coexisting regunected (ergodio component. These features are associated
lar and chaotic regions. Over the past years, a number Qfjih the slow and nonuniform convergence of the invariant
ground-breaking work$1-9] have increasingly elucidated measyre due to the breakdown of self-similarity in nonhyper-
the asymptotic behavior of such systems and it is now wellyyjic systems. To illustrate the mechanism behind the prop-
understood that, because of the stickiness due t@yies of the effective invariants, we introduce a simple de-
Kolmogorov-Arnold-Moser(KAM) tori, the chaotic dynam- (e ministic model which we build on the observation that a
ics of typical Hamiltonian systems is fundamentally different 45 miitonian system can be represented as a chain of hyper-
from that of hyperbolic, fully chaotic systems. Here pq)ic systems.
“asymptotic” means in the limit of large time scales and  Tpe paper is organized as follows. We start, in Sec. I,
small length scales. But in realistic situations, the time andyiin an analysis of the invariant measure and the outline of
length scales are limited. In the case of hyperbolic systemgp,e transport structures underlying its convergence. Our
this is not a constraint because tstatistical self-similarity  nain model is introduced and analyzed in Sec. lll. The ef-
of the underlying invariant sets guarantees the fast convefaciive fractal dimension is defined in Sec. IV and its prop-

gence of the dynamical invariantentropies, Lyapunov ex- gries are verified for a specific system in Sec. V. Conclu-
ponents, fractal dimensions, escape rates,) eéod the gjons are presented in the last section.

asymptotic dynamics turns out to be a very good approxima-
tion of the dynamics at finite scales. In nonhyperbolic sys-
tems, however, the self-similarity is usually lost because the Il. INVARIANT MEASURE
invariant sets are not statistically invariant under magnifica- gy concreteness, consider a two-dimensional area-
tions. As a result, the finite-scale behavior of a Hamiltonianpreser\,ing map with a major KAM island surrounded by a
system may be fundamentally different from the asymptoticchaotic region. One such map captures all the main proper-
behavior considered previously, which is in turn hard toties of a wide class of Hamiltonian systems with mixed
come by either numericall9,10] or experimentally{11]. phase space. When the system is ofseattering, almost all
The aim of this paper is to study the dynamics of Hamil- 5 rticles initialized in the chaotic region eventually escape to
tonian systems at finite, physically relevant scales. To thxfinjty. We first study this case with a diffusive model for
best of our knowledge, this problem has not been considerege transversal motion close to the main KAM island, obtain-
before. Herewith we focus on Hamiltonian chaotic scattering an analytical expression for the probability density, t)
ing, Wh_ich is one of the most prevalent man_ifestations (_)fof particles remaining in the scattering region at titrend
chaos in open systems, with examples ranging from fluidjistancex from the island(see the Appendjx We find that,
dynamics[10,11 to solid-state physicgl2] to general rela- i, the case of chaotic scattering, a singularity develops and
tivity [13]. We show that the finite-scale dynamics of aine invariant measure, given by im, p(x,t), accumulates
Hamiltonian system is characterized bffectivedynamical on the outermost KAM torus of the KAM islantsee the
Appendix. Physically, this corresponds to the tendency of
nonescaping particles to concentrate around the regular re-
*Electronic address: motter@mpipks-dresden.mpg.de gions. Dynamically, the stickiness due to KAM tori underlies
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FIG. 1. Snapshots of the probability densitas a function ok, M
for p(x,0)=8(x—Xg), Xo=1, x,=2, @=3, and the outermost torus of
the KAM island atx=0 (see the Appendix The timet is indicated
in the figure. .
4
two major features of Hamiltonian chaotic scattering, namely
the algebraic decay of the survival probability of particles in
the scattering regiof2—6] and the integer dimension of the
chaotic saddl¢7], and distinguishes this phenomenon from M,
the hyperbolic chaotic scattering characterized by exponen-
tial decay and noninteger fractal dimension. However, the
convergence of the measure is rather slow and highly non-
uniform, as shown in Fig. 1 for typical parameters, which is
in sharp contrast with the fast, uniform convergence ob- '-
served in hyperbolic systems. Our main results are ultimately
related to this slow and nonuniform convergence of the in- FIG. 2. Semi-infinite chain of hyperbolic mapm;,
variant measure. i=1,2,....

Previous works on transport in Hamiltonian systems have
used stochastic models, where invariant structures arounghjic scattering is in many respects similar to a sequence of
KAM |slqnds are smoothed out and t_he dynamics is givemyperbolic scatterings.
entirely in terms of a diffusion equatiofl,4] or a set of
transition probabilitiefMarkov chains or treeq3,14]. The
s_tochastic approach is suitable to descrik_Je transport proper- 1. CHAIN MODEL
ties (as abovg but cannot be used to predict the behavior of
dynamical invariants such as Lyapunov exponents and fractal We now introduce a simple deterministic model that in-
dimensions. Here we adopt a deterministic approach whereorporates the above elements and reproduces essential fea-
we use the cantori surrounding the KAM islands to split thetures of the Hamiltonian dynamics. Our model is depicted in
nonhyperbolic dynamics of the Hamiltonian system into aFig. 2 and consists of a semi-infinite chain of one-

v,
14

chain of hyperbolic dynamical systems. dimensional “/\/-shaped” maps, defined as follows:
Cantori are invariant structures that determine the trans- 0<x<1/

versal transport close to the KAM islan{i®,3]. There is a §X, =X ¢

hierarchy of infinitely many Cantori around each island. Let M;(x) =1 = §(x— Aj_) +2, 1 <x- Ay < 21§;

C, denote the area of the scattering region outside the outer- §(x—1)+1, -1k <x-1=0,

most cantorusC, the annular area in between the first and _ .
second cantorus, and so on. Ass increasedC; becomes Whereg>3 and 0<A;<1-3/§ (j=1,2,..). If x falls in
thinner and approaches the corresponding island. For sinthe interval 15, <x<1/§+A;, whereM; is not defined, the
plicity, we consider that there is a single isldiid] and that, “particle” is considered to have crossed a cantorus to the
in each iteration, a particle i€; may either move to the “outer level” j—1. This interval is mapped uniformly 4®,
outer levelC;_; or the inner levelC;,; or stay in the same 1], and the iteration proceeds through_,. Symbolically,
level [3]. Let AT and A} denote the transition probabilities this is indicated byj—j-1. Similarly, if x falls into
from level j to -1 andj+1, respectively. A particle i€, ~ 1-1/§-A7<x<1-1/¢, whereAT=1-3/¢-A;, the par-
may also leave the scattering region, and in this case wtcle goes to the “inner level,” angl— j+1. Particles that
consider that the particle has escaped. The escaping regionrgach 1£,<x<1/+A; are considered to have escaped.
denoted byC,. The chaotic saddle is expected to have pointsThe domain ofM; is denoted by; and is analogous tG; in

in C; for all j=1. It is natural to assume that the transition a Hamiltonian system, wheug; and AT represent the tran-
probabilitiesAT andA; are constant in time. This means that sition probabilities. The transition rate rati;as:A]*/Aj‘ and
each individual level can be regarded as a hyperbolic scat#=Aj.,1/4A; are taken in the interval @ u <»<1 and are set
tering system, with its characteristic exponential decay andio be independent df, WhereAj:AﬁAj‘. The parameten
noninteger chaotic saddle dimension. Therefore, a nonhypeis a measure of the fraction of particles in a leye¢hat will
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FIG. 3. Chain model forg;

=4.1. (a) Survival probability Q
and (b) average positioj) as a
function of time for »=0.01 and
v=0.02 (full line), ©=0.01 andr
=0.1 (dashed, bottom and w
=0.08 andrv=0.1 (dashed, top
(c) Fraction f(e) of uncertain
points as a function of the scate
for points taken from L=l
(circles, L=1, (squares and the
0 a6 , subintervalL of 1, first mapped
) poza™ T into 1, (diamond$, where u
3 e _ooonoo° , o | =0.01 andv=0.1. Circles in(c)
'/ 52 are shifted vertically upward for
: clarity. (d) The same as iffic) for
o £=103% and L=I, (circles, L
JCNN =1, (squarel anq L=_I3 (t'ri-
-2 500°° RS angle$. Dashed line (right-side
(b) Oooooooooooo (d~)-_é axis): average maximunj of or-

© ' bits started from e-uncertain
points, forL=1;.
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move to the inner level+1 when leaving levej, while vis  (initial points whose escaping time is different from the es-
a measure of how much longer it takes for the particles in theaping time of points takea apar}. The scaling is statisti-
inner level to escape. The nondependencg oarresponds cally well defined over decades and the exponent

to the approximate scaling of the cantori suggested by the Aln f(¢)/Aln & can be computed accurately. However, the
renormalization theor}3]. Despite the hyperbolicity of each resulting dimension 1« is not only significantly smaller
map, the entire chain behaves as a nonhyperbolic system. Fg{an 1 put also depends critically on the regibrof the

a uniform initial distribution inl, it is not difficult to show phase space where it is computed. The convergence of the
[16] that the number of particles remaininlg ir)l the chain afteryimension is indeed so slow that it can only be noticed when
a long timet decays algebraically &3(t) ~ ™" #™*, and that observed over very many decades of resolution, as shown in

the initial conditions of never escaping particles form a zeroFig. 3(d), where data of Fig. @) are plotted over 35 de-
Lebesgue measure fractal set with box-counting dlmensmgades! Initially smaller, the dimension measured IgFl,

1. However, the f|n|te-sca_le behavior may d_ewate Cons'derépproaches the dimension measuredLfei, as the scale
ably from these asymptotics, as shown in Fig. 3.

In Fig. 3(a), we show the survival probabilit§ as a func- is. reduced beyond 1 [i.e., the corresp_onding curves in
tion of time. For smallu and v, the curve is composed of a F'g'. 3((.1) become parallgl .A.‘S s'hown n Fig. gj), this be-
discrete sequence of exponentials with scaling exponen%av'or is related toatransm'on in the average mnermosF level
In(1-A;), which decreaséin absolute valugas we go for- Jﬂ]@? reached by the particles launched frauncertain
ward in the sequence. The length of each exponential sedQints. Ase is further reduced, new transitions are expected.
ment is of the order of in the decay ofQ and —Inv in the he dimension measured in between transitions is mainly
variation of Int. This striking behavior is related to the time determined by the dimensidd=In 3/In &, k=(jma¥, of the
evolution of the density of particles inside the chain. This iscorresponding element of the chain. For gieand e, the
shown in Fig. 8b), where we plot the average positign of ~ measured dimension is larger whenis taken in a denser
an ensemble of particles initialized in(i.e.,j=1). The tran-  part of the invariant set, such as in the subinterval,dirst
sitions between successive exponentials in the deca® of mapped intd, [Fig. 3(c), diamond$, becauséj,,, is larger
[Fig. 3(@)] match the transitions from a levgko the next in  in these regions. In some regions, however, the measured
the average position of the remaining partidlegy. 3(b)]. In  dimension is quite different from the asymptotic value even
a Hamiltonian system, the increase(pfin time is related to  at scales as small as=10"%°. This slow convergence of the
the development of the singular invariant measure anticidimension is due to the slow increase(f.,, which in a
pated in our diffusion analysiésee Fig. 1 The piecewise Hamiltonian system is related to the slow convergence of the
exponential behavior o) is smoothed out for largg and  invariant measuréFig. 1). The convergence is even slower
v>pu [Figs. 3a) and 3b)]. for smaller u and largerv. Incidentally, the experimental

In Fig. 3(c), we show the fractal dimension of the set of measurements of the fractal dimension are usually based on
initial conditions of never escaping particles as computedscalings over less than two decad&8]. Therefore, at real-
from the uncertainty algorithrfil 7], which consists in mea- istic scales the dynamics is clearly not governed by the
suring the scaling of the fractiof{e) of e-uncertainpoints  asymptotic dynamical invariants.
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IV. EFFECTIVE DYNAMICAL INVARIANTS

Our results on the chain model motivate us to introduce
the concept of effective dynamical invariants. As a specific
example, we consider theffectivefractal dimension, which,
for the intersection of a fractal s&with an n-dimensional
regionL, we define as

dinf(e’)

Des(L;e) =n— dine , ()

e'=¢

where f(e")=N(g’)/Ng(e’), and N(¢’) and Ny(¢’) are the
number of cubes of edge length needed to cove$N L and

L, respectively{19]. We takeL to be a generic segment of
line [i.e.,n=1in Eq.(1)] intersected bys on a fractal set. In
the limit e — 0, we recover the usual box-counting dimension
D=1-lim,_yAInf(e)/AIn e of the fractal seBNL, which

is known to be 1 for all our choices &f. However, for any
practical purpose, the parameteiis limited and cannot be
made arbitrarily smalle.g., it cannot be smaller than the size
of the particles, the resolution of the experiment, and the
length scales neglected in modeling the systehh scalee,

the system behaves as if the fractal dimension were

Di(L; ) (therefore “effective” dimensionIn particular, the log &
final state sensitivity of particles launched framwith the
initial conditions known within accuracy”, is determined FIG. 4. (a) KAM islands (blank), stable manifoldgray), and the

by Def(L;&") rather tharD: ase is variated arouna”, the  lines of initial conditions(L, is a subinterval oL,). (b) Effective
fraction of particles whose final state is uncertain scales agimension forL=L, (circles, L=Ly, (squares and L=L. (tri-
1 Peiflis) which is different from the prediction' ™. This angles. The data in(b) are shifted vertically for clarity.
is important in this context because, as shown in Fig. 3
(where the effective dimension is given by &); the value Inthe same figure, we also show the complex invariant struc-
of Dqi(L;e) may be significantly different from the ture around the islands, the stable manifold of the chaotic
asymptotic valueD=1 even for unrealistically smal and saddle, and three different choices for the line of starting
may also depend on the region of the phase space. Simil@oints: a large interval away from the islanfs,), a small
considerations apply to many other invariants as well. subinterval of this interval where the stable manifold appears
We now return to the Hamiltonian case. Consider a scatto be densefL), and an interval closer to the islan(ls,).
tering process in which particles are launched from aline The corresponding effective dimensions are computed for a
transversal to the stable manifolll; of the chaotic saddle. wide interval of e. The results are shown in Fig.(®:
Based on the construction suggested by the chain model, it Beff(La; €)=0.84,DeLp; £)=0.90, andDgs(L; €)=0.97 for
not difficult to see thatW,N L exhibits a hierarchical struc- 108<e <107 These results agree with our predictions that
ture which is not self-similar and is composed of infinitely the effective fractal dimension has the following properties:
many nested cantor sets, each of which is associated with tHg.¢s may be significantly different from the asymptotic value
dynamics inside one of the regio@. As a consequence, the 1 of the fractal dimensiorDe¢ depends on the resolutian
effective dimensio.(L ; €) in Hamiltonian systems is ex- but is nearly constant over decad@gy; depends on the re-
pected to behave similarly to the effective dimension in thegion of the phase space under consideration and, in particu-
chain mode[Figs. 3c) and 3d)]. In particular,Deg(L;€) is  lar, is larger in regions closer to the islands and in regions

expected to display a strong dependencelLoand a weak Wwhere the stable manifold is denser. Similar results are ex-
dependence oa. pected for any typical Hamiltonian system with mixed phase

space.

V. NUMERICAL VERIFICATION VI. CONCLUSIONS

We test our predictions on the area-preserving Hénon We have shown that the finite-scale dynamics of Hamil-
map:f(x,y)=(A—y—-x?,x), where\ is the bifurcation param- tonian systems, relevant for realistic situations, is governed
eter. In this system, typical points outside KAM islands areby effective dynamical invariants. The effective invariants
eventually mapped to infinity. Because of the symméty  are not only different from the asymptotic invariants but also
=gefeg, whereg(x,y)=(y,x), the stable and unstable mani- from the usual hyperbolic invariants because they strongly
folds of the chaotic saddle are obtained from each other bgepend on the region of the phase space. Our results are
exchangingx and y. For A=0.05, the system displays a generic and expected to meet many practical applications. In
period-1 and a period-4 major island, as shown in Fig).4 particular, our results are expected to be relevant for fluid
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flows, where the advection dynamics of tracer particles idering process, the initial distribution of particles is localized

often Hamiltonian[10]. In this context, a slow nonuniform

apart from the confining islands. We takéx, 0) = 5(x—Xp),

convergence of effective invariants is expected not only foix,>0, and consider a particle to escape when it reaches

time-periodic flows, capable of holding KAM tori, but also
for a wide class of time-irregular incompressible flows with
nonslip obstacles or aperiodically moving vortices.
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APPENDIX

The diffusion model is3,P(x,t) = [x*P(x,t)], whereP
is the probability density of all particlegs=0, anda>2 [1].
The outermost torus of the KAM island is @t 0, where the
diffusion rate(proportional tox®) vanishes. In a chaotic scat-

=x,. Under the approximation that for large the return of
particles can be neglected, we disregard the boundary condi-
tion P(x;,t)=0 and we take the solution to be the corre-
sponding  Green function: P(x,t)=(a—2)(xX) Y4yo

X exp(-y2-y3)l 5(2yyp), wherey=(a—2) 12 (@2/2 y, is

qY at x=xo, B8=(a—1)/(a-2), andl is the modified Bessel

function, which scales ag~ (2yyo)? for small 2y, [4]. For
any fixedx>0, we can show that the distribution for large
decreases aB(x,t)~t#1, wheref=(a—1)/(a-2). On the
other hand, as shown in R¢b], the fraction of particles in
the interval x<x; decays algebraically asQ(t)

= [$IP(x,t)dx~t™#. Combining these two results, it follows
that the normalized probability densipfx,t)=P(x,t)/Q(t)
decreases ag(x,t)~t™! at each fixedx  (0,x,) for large
enought and diverges arbitrarily close to=0.
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