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An adequate characterization of the dynamics of Hamiltonian systems at physically relevant scales has been
largely lacking. Here we investigate this fundamental problem and we show that the finite-scale Hamiltonian
dynamics is governed by effective dynamical invariants, which are significantly different from the dynamical
invariants that describe the asymptotic Hamiltonian dynamics. The effective invariants depend both on the
scale of resolution and the region of the phase space under consideration, and they are naturally interpreted
within a framework in which the nonhyperbolic dynamics of the Hamiltonian system is modeled as a chain of
hyperbolic systems.
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I. INTRODUCTION

A comprehensive understanding of Hamiltonian dynamics
is a long-outstanding problem in nonlinear and statistical
physics, which has important applications in various other
areas of physics. Typical Hamiltonian systems are nonhyper-
bolic as they exhibit mixed phase space with coexisting regu-
lar and chaotic regions. Over the past years, a number of
ground-breaking worksf1–9g have increasingly elucidated
the asymptotic behavior of such systems and it is now well
understood that, because of the stickiness due to
Kolmogorov-Arnold-MosersKAM d tori, the chaotic dynam-
ics of typical Hamiltonian systems is fundamentally different
from that of hyperbolic, fully chaotic systems. Here
“asymptotic” means in the limit of large time scales and
small length scales. But in realistic situations, the time and
length scales are limited. In the case of hyperbolic systems,
this is not a constraint because thesstatisticald self-similarity
of the underlying invariant sets guarantees the fast conver-
gence of the dynamical invariantssentropies, Lyapunov ex-
ponents, fractal dimensions, escape rates, etc.d and the
asymptotic dynamics turns out to be a very good approxima-
tion of the dynamics at finite scales. In nonhyperbolic sys-
tems, however, the self-similarity is usually lost because the
invariant sets are not statistically invariant under magnifica-
tions. As a result, the finite-scale behavior of a Hamiltonian
system may be fundamentally different from the asymptotic
behavior considered previously, which is in turn hard to
come by either numericallyf9,10g or experimentallyf11g.

The aim of this paper is to study the dynamics of Hamil-
tonian systems at finite, physically relevant scales. To the
best of our knowledge, this problem has not been considered
before. Herewith we focus on Hamiltonian chaotic scatter-
ing, which is one of the most prevalent manifestations of
chaos in open systems, with examples ranging from fluid
dynamicsf10,11g to solid-state physicsf12g to general rela-
tivity f13g. We show that the finite-scale dynamics of a
Hamiltonian system is characterized byeffectivedynamical

invariantsse.g., effective fractal dimensiond, which sid may
be significantly different from the corresponding invariants
of the asymptotic dynamics;sii d depend on the resolution but
can be regarded as constants over many decades in a given
region of the phase space; andsiii d may change drastically
from one region to another of thesamedynamically con-
nectedsergodicd component. These features are associated
with the slow and nonuniform convergence of the invariant
measure due to the breakdown of self-similarity in nonhyper-
bolic systems. To illustrate the mechanism behind the prop-
erties of the effective invariants, we introduce a simple de-
terministic model which we build on the observation that a
Hamiltonian system can be represented as a chain of hyper-
bolic systems.

The paper is organized as follows. We start, in Sec. II,
with an analysis of the invariant measure and the outline of
the transport structures underlying its convergence. Our
chain model is introduced and analyzed in Sec. III. The ef-
fective fractal dimension is defined in Sec. IV and its prop-
erties are verified for a specific system in Sec. V. Conclu-
sions are presented in the last section.

II. INVARIANT MEASURE

For concreteness, consider a two-dimensional area-
preserving map with a major KAM island surrounded by a
chaotic region. One such map captures all the main proper-
ties of a wide class of Hamiltonian systems with mixed
phase space. When the system is opensscatteringd, almost all
particles initialized in the chaotic region eventually escape to
infinity. We first study this case with a diffusive model for
the transversal motion close to the main KAM island, obtain-
ing an analytical expression for the probability densityrsx,td
of particles remaining in the scattering region at timet and
distancex from the islandssee the Appendixd. We find that,
in the case of chaotic scattering, a singularity develops and
the invariant measure, given by limt→` rsx,td, accumulates
on the outermost KAM torus of the KAM islandssee the
Appendixd. Physically, this corresponds to the tendency of
nonescaping particles to concentrate around the regular re-
gions. Dynamically, the stickiness due to KAM tori underlies*Electronic address: motter@mpipks-dresden.mpg.de
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two major features of Hamiltonian chaotic scattering, namely
the algebraic decay of the survival probability of particles in
the scattering regionf2–6g and the integer dimension of the
chaotic saddlef7g, and distinguishes this phenomenon from
the hyperbolic chaotic scattering characterized by exponen-
tial decay and noninteger fractal dimension. However, the
convergence of the measure is rather slow and highly non-
uniform, as shown in Fig. 1 for typical parameters, which is
in sharp contrast with the fast, uniform convergence ob-
served in hyperbolic systems. Our main results are ultimately
related to this slow and nonuniform convergence of the in-
variant measure.

Previous works on transport in Hamiltonian systems have
used stochastic models, where invariant structures around
KAM islands are smoothed out and the dynamics is given
entirely in terms of a diffusion equationf1,4g or a set of
transition probabilitiessMarkov chains or treesd f3,14g. The
stochastic approach is suitable to describe transport proper-
ties sas aboved, but cannot be used to predict the behavior of
dynamical invariants such as Lyapunov exponents and fractal
dimensions. Here we adopt a deterministic approach where
we use the cantori surrounding the KAM islands to split the
nonhyperbolic dynamics of the Hamiltonian system into a
chain of hyperbolic dynamical systems.

Cantori are invariant structures that determine the trans-
versal transport close to the KAM islandsf2,3g. There is a
hierarchy of infinitely many Cantori around each island. Let
C1 denote the area of the scattering region outside the outer-
most cantorus,C2 the annular area in between the first and
second cantorus, and so on. Asj is increased,Cj becomes
thinner and approaches the corresponding island. For sim-
plicity, we consider that there is a single islandf15g and that,
in each iteration, a particle inCj may either move to the
outer levelCj−1 or the inner levelCj+1 or stay in the same
level f3g. Let D j

− and D j
+ denote the transition probabilities

from level j to j −1 and j +1, respectively. A particle inC1
may also leave the scattering region, and in this case we
consider that the particle has escaped. The escaping region is
denoted byC0. The chaotic saddle is expected to have points
in Cj for all j ù1. It is natural to assume that the transition
probabilitiesD j

− andD j
+ are constant in time. This means that

each individual level can be regarded as a hyperbolic scat-
tering system, with its characteristic exponential decay and
noninteger chaotic saddle dimension. Therefore, a nonhyper-

bolic scattering is in many respects similar to a sequence of
hyperbolic scatterings.

III. CHAIN MODEL

We now introduce a simple deterministic model that in-
corporates the above elements and reproduces essential fea-
tures of the Hamiltonian dynamics. Our model is depicted in
Fig. 2 and consists of a semi-infinite chain of one-
dimensional “/\/-shaped” maps, defined as follows:

Mjsxd = 5j jx, 0 ø x , 1/j j

− j jsx − D j
−d + 2, 1/j j , x − D j

− , 2/j j

j jsx − 1d + 1, − 1/j j , x − 1 ø 0,
6

wherej j .3 and 0,D j
−,1−3/j j s j =1,2, . . .d. If x falls in

the interval 1/j j øxø1/j j +D j
−, whereMj is not defined, the

“particle” is considered to have crossed a cantorus to the
“outer level” j −1. This interval is mapped uniformly tof0,
1g, and the iteration proceeds throughMj−1. Symbolically,
this is indicated by j → j −1. Similarly, if x falls into
1−1/j j −D j

+øxø1−1/j j, whereD j
+=1−3/j j −D j

−, the par-
ticle goes to the “inner level,” andj → j +1. Particles that
reach 1/j1øxø1/j1+D1

− are considered to have escaped.
The domain ofMj is denoted byI j and is analogous toCj in
a Hamiltonian system, whereD j

− and D j
+ represent the tran-

sition probabilities. The transition rate ratiosm=D j
+/D j

− and
n=D j+1/D j are taken in the interval 0,m,n,1 and are set
to be independent ofj , whereD j =D j

++D j
−. The parameterm

is a measure of the fraction of particles in a levelj that will

FIG. 1. Snapshots of the probability densityr as a function ofx,
for rsx,0d=dsx−x0d, x0=1, x1=2, a=3, and the outermost torus of
the KAM island atx=0 ssee the Appendixd. The timet is indicated
in the figure.

FIG. 2. Semi-infinite chain of hyperbolic mapsMj,
j =1,2, . . ..
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move to the inner levelj +1 when leaving levelj , while n is
a measure of how much longer it takes for the particles in the
inner level to escape. The nondependence onj corresponds
to the approximate scaling of the cantori suggested by the
renormalization theoryf3g. Despite the hyperbolicity of each
map, the entire chain behaves as a nonhyperbolic system. For
a uniform initial distribution inI1, it is not difficult to show
f16g that the number of particles remaining in the chain after
a long timet decays algebraically asQstd, t−ln m/ln n, and that
the initial conditions of never escaping particles form a zero
Lebesgue measure fractal set with box-counting dimension
1. However, the finite-scale behavior may deviate consider-
ably from these asymptotics, as shown in Fig. 3.

In Fig. 3sad, we show the survival probabilityQ as a func-
tion of time. For smallm andn, the curve is composed of a
discrete sequence of exponentials with scaling exponents
lns1−D j

−d, which decreasesin absolute valued as we go for-
ward in the sequence. The length of each exponential seg-
ment is of the order ofm in the decay ofQ and −lnn in the
variation of lnt. This striking behavior is related to the time
evolution of the density of particles inside the chain. This is
shown in Fig. 3sbd, where we plot the average positionk jl of
an ensemble of particles initialized inI1 si.e., j =1d. The tran-
sitions between successive exponentials in the decay ofQ
fFig. 3sadg match the transitions from a levelj to the next in
the average position of the remaining particlesfFig. 3sbdg. In
a Hamiltonian system, the increase ofk jl in time is related to
the development of the singular invariant measure antici-
pated in our diffusion analysisssee Fig. 1d. The piecewise
exponential behavior ofQ is smoothed out for largem and
n.m fFigs. 3sad and 3sbdg.

In Fig. 3scd, we show the fractal dimension of the set of
initial conditions of never escaping particles as computed
from the uncertainty algorithmf17g, which consists in mea-
suring the scaling of the fractionfs«d of «-uncertainpoints

sinitial points whose escaping time is different from the es-
caping time of points taken« apartd. The scaling is statisti-
cally well defined over decades and the exponenta
=Dln fs«d /Dln « can be computed accurately. However, the
resulting dimension 1−a is not only significantly smaller
than 1 but also depends critically on the regionL of the
phase space where it is computed. The convergence of the
dimension is indeed so slow that it can only be noticed when
observed over very many decades of resolution, as shown in
Fig. 3sdd, where data of Fig. 3scd are plotted over 35 de-
cades! Initially smaller, the dimension measured forL= I1

approaches the dimension measured forL= I2 as the scale«
is reduced beyond 10−15 fi.e., the corresponding curves in
Fig. 3sdd become parallelg. As shown in Fig. 3sdd, this be-
havior is related to a transition in the average innermost level
k jmaxl reached by the particles launched from«-uncertain
points. As« is further reduced, new transitions are expected.
The dimension measured in between transitions is mainly
determined by the dimensionD=ln 3/ ln jk, k=k jmaxl, of the
corresponding element of the chain. For givenj and «, the
measured dimension is larger whenL is taken in a denser
part of the invariant set, such as in the subinterval ofI1 first
mapped intoI2 fFig. 3scd, diamondsg, becausek jmaxl is larger
in these regions. In some regions, however, the measured
dimension is quite different from the asymptotic value even
at scales as small as«=10−30. This slow convergence of the
dimension is due to the slow increase ofk jmaxl, which in a
Hamiltonian system is related to the slow convergence of the
invariant measuresFig. 1d. The convergence is even slower
for smaller m and largern. Incidentally, the experimental
measurements of the fractal dimension are usually based on
scalings over less than two decadesf18g. Therefore, at real-
istic scales the dynamics is clearly not governed by the
asymptotic dynamical invariants.

FIG. 3. Chain model forj1

=4.1. sad Survival probability Q
and sbd average positionk jl as a
function of time for m=0.01 and
n=0.02 sfull lined, m=0.01 andn
=0.1 sdashed, bottomd, and m
=0.08 andn=0.1 sdashed, topd.
scd Fraction fs«d of uncertain
points as a function of the scale«
for points taken from L= I1

scirclesd, L= I2 ssquaresd, and the
subintervalL of I1 first mapped
into I2 sdiamondsd, where m
=0.01 andn=0.1. Circles inscd
are shifted vertically upward for
clarity. sdd The same as inscd for
«ù10−35 and L= I1 scirclesd, L
= I2 ssquaresd, and L= I3 stri-
anglesd. Dashed line sright-side
axisd: average maximumj of or-
bits started from «-uncertain
points, forL= I1.
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IV. EFFECTIVE DYNAMICAL INVARIANTS

Our results on the chain model motivate us to introduce
the concept of effective dynamical invariants. As a specific
example, we consider theeffectivefractal dimension, which,
for the intersection of a fractal setS with an n-dimensional
regionL, we define as

DeffsL;«d = n − Ud ln fs«8d
d ln «8

U
«8=«

, s1d

where fs«8d=Ns«8d /N0s«8d, and Ns«8d and N0s«8d are the
number of cubes of edge length«8 needed to coverSùL and
L, respectivelyf19g. We takeL to be a generic segment of
line fi.e., n=1 in Eq.s1dg intersected byS on a fractal set. In
the limit «→0, we recover the usual box-counting dimension
D=1−lim«→0 D ln fs«d /D ln « of the fractal setSùL, which
is known to be 1 for all our choices ofL. However, for any
practical purpose, the parameter« is limited and cannot be
made arbitrarily smallse.g., it cannot be smaller than the size
of the particles, the resolution of the experiment, and the
length scales neglected in modeling the systemd. At scale«,
the system behaves as if the fractal dimension were
DeffsL ;«d stherefore “effective” dimensiond. In particular, the
final state sensitivity of particles launched fromL, with the
initial conditions known within accuracy«* , is determined
by DeffsL ;«*d rather thanD: as« is variated around«* , the
fraction of particles whose final state is uncertain scales as
«1−Def fsL;«* d, which is different from the prediction«1−D. This
is important in this context because, as shown in Fig. 3
swhere the effective dimension is given by 1−ad, the value
of DeffsL ;«d may be significantly different from the
asymptotic valueD=1 even for unrealistically small« and
may also depend on the region of the phase space. Similar
considerations apply to many other invariants as well.

We now return to the Hamiltonian case. Consider a scat-
tering process in which particles are launched from a lineL
transversal to the stable manifoldWs of the chaotic saddle.
Based on the construction suggested by the chain model, it is
not difficult to see thatWsùL exhibits a hierarchical struc-
ture which is not self-similar and is composed of infinitely
many nested cantor sets, each of which is associated with the
dynamics inside one of the regionsCj. As a consequence, the
effective dimensionDeffsL ;«d in Hamiltonian systems is ex-
pected to behave similarly to the effective dimension in the
chain modelfFigs. 3scd and 3sddg. In particular,DeffsL ;«d is
expected to display a strong dependence onL and a weak
dependence on«.

V. NUMERICAL VERIFICATION

We test our predictions on the area-preserving Hénon
map: fsx,yd=sl−y−x2,xd, wherel is the bifurcation param-
eter. In this system, typical points outside KAM islands are
eventually mapped to infinity. Because of the symmetryf−1

=g+ f +g, wheregsx,yd=sy,xd, the stable and unstable mani-
folds of the chaotic saddle are obtained from each other by
exchangingx and y. For l=0.05, the system displays a
period-1 and a period-4 major island, as shown in Fig. 4sad.

In the same figure, we also show the complex invariant struc-
ture around the islands, the stable manifold of the chaotic
saddle, and three different choices for the line of starting
points: a large interval away from the islandssLad, a small
subinterval of this interval where the stable manifold appears
to be densersLbd, and an interval closer to the islandssLcd.
The corresponding effective dimensions are computed for a
wide interval of «. The results are shown in Fig. 4sbd:
DeffsLa;«d=0.84,DeffsLb;«d=0.90, andDeffsLc;«d=0.97 for
10−8,«,10−5. These results agree with our predictions that
the effective fractal dimension has the following properties:
Deff may be significantly different from the asymptotic value
1 of the fractal dimension;Deff depends on the resolution«
but is nearly constant over decades;Deff depends on the re-
gion of the phase space under consideration and, in particu-
lar, is larger in regions closer to the islands and in regions
where the stable manifold is denser. Similar results are ex-
pected for any typical Hamiltonian system with mixed phase
space.

VI. CONCLUSIONS

We have shown that the finite-scale dynamics of Hamil-
tonian systems, relevant for realistic situations, is governed
by effective dynamical invariants. The effective invariants
are not only different from the asymptotic invariants but also
from the usual hyperbolic invariants because they strongly
depend on the region of the phase space. Our results are
generic and expected to meet many practical applications. In
particular, our results are expected to be relevant for fluid

FIG. 4. sad KAM islandssblankd, stable manifoldsgrayd, and the
lines of initial conditionssLb is a subinterval ofLad. sbd Effective
dimension for L=La scirclesd, L=Lb ssquaresd, and L=Lc stri-
anglesd. The data insbd are shifted vertically for clarity.
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flows, where the advection dynamics of tracer particles is
often Hamiltonianf10g. In this context, a slow nonuniform
convergence of effective invariants is expected not only for
time-periodic flows, capable of holding KAM tori, but also
for a wide class of time-irregular incompressible flows with
nonslip obstacles or aperiodically moving vortices.

ACKNOWLEDGEMENTS

This work was supported by MPIPKS, FAPESP, and
CNPq. A.E.M. thanks Rainer Klages for illuminating discus-
sions.

APPENDIX

The diffusion model is]tPsx,td=]xfxa]xPsx,tdg, whereP
is the probability density of all particles,xù0, anda.2 f1g.
The outermost torus of the KAM island is atx=0, where the
diffusion ratesproportional toxad vanishes. In a chaotic scat-

tering process, the initial distribution of particles is localized
apart from the confining islands. We takePsx,0d=dsx−x0d,
x0.0, and consider a particle to escape when it reachesx
ùx1. Under the approximation that for largex1 the return of
particles can be neglected, we disregard the boundary condi-
tion Psx1,td=0 and we take the solution to be the corre-
sponding Green function: Psx,td=sa−2dsxx0d−1/2yy0

3exps−y2−y0
2dIbs2yy0d, wherey=sa−2d−1t−1/2x−sa−2d/2, y0 is

y at x=x0, b=sa−1d / sa−2d, and Ib is the modified Bessel
function, which scales asIb,s2yy0db for small 2yy0 f4g. For
any fixedx.0, we can show that the distribution for larget
decreases asPsx,td, t−b−1, whereb=sa−1d / sa−2d. On the
other hand, as shown in Ref.f5g, the fraction of particles in
the interval x,x1 decays algebraically as Qstd
;e0

x1Psx,tddx, t−b. Combining these two results, it follows
that the normalized probability densityrsx,td; Psx,td /Qstd
decreases asrsx,td, t−1 at each fixedxP s0,x1d for large
enought and diverges arbitrarily close tox=0.
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